Syllabus – Fall 2012

Aims of the course

The aim of the course is to familiarise students with current areas of research and development within computer science that have a direct relevance to the field of journalism, so that they are capable of participating in the design of future public information systems.

The course is built around a “design” frame that examines technology from the point of view of its possible applications and social context. It will familiarize the students with both the major unsolved problems of internet-era journalism, and the major areas of research within computer science that are being brought to bear on these problems. The scope is wide enough to include both relatively traditional journalistic work, such as computer-assisted investigative reporting, and the broader information systems that we all use every day to inform ourselves, such as search engines. The course will provide students with a thorough understanding of how particular fields of computational research relate to products being developed for journalism, and provoke ideas for their own research and projects.

Research-level computer science material will be discussed in class, but the emphasis will be on understanding the capabilities and limitations of this technology. Students with a CS background will have opportunity for algorithmic exploration and innovation, however the primary goal of the course is thoughtful, application-centered research and design.

Assignments will be completed in groups and involve experimentation with fundamental computational techniques. There will be some light coding, but the emphasis will be on thoughtful and critical analysis.

Format of the class, grading and assignments.

It is a fourteen week course for Masters’ students which has both a six point and a three point version. The six point version is designed for dual degree candidates in the journalism and computer science concentration, while the three point version is designed for those cross listing from other concentrations and schools.

The class is conducted in a seminar format. Assigned readings and computational techniques will form the basis of class discussion. Throughout the semester we will be inviting guest speakers with expertise in the relevant areas to talk about their related research and product development

The output of the course for a 6pt candidate will be one research assignment in the form of a 25-page research paper. The three point course will require a shorter research paper, and both versions of the course will also have approximately bi-weekly written assignmenst which will frequently involve experimentation with computational techniques. For those in the dual degree program or who have strong technical skills, there is an option to produce a prototype as part of the final assignment. The class is conducted on pass/fail basis for grading, in line with the journalism school’s grading system.

Week 1. – Basics
We set out the expectations of the course, and frame our work as the task of designing of public information production and distribution systems. Computer science techniques can help in four different areas: data-driven reporting, story presentation, information filtering, and effect tracking. The recommended readings are aiming to to give you an understanding of the landscape of technical disruption in the news industry, and the ways in which computer science techniques can help to build something better.

Required

Recommended

  • Newspapers and thinking the Unthinkable, Clay Shirky
  • Computational Journalism, Cohen, Turner, Hamilton,
  • Precision Journalism, Ch.1, Journalism and the Scientific Tradition, Philip Meyer

Viewed in class

Weeks 2-3: Technical fundamentals
We’ll spend the next couple weeks examining the techniques that will form the basis of much of the rest of our work in the course: clustering and the document vector space model.

Week 2: Clustering
A vector of numbers is a fundamental data representation which forms the basis of very many algorithms in data mining, language processing, machine learning, and visualization. This week we will explore two things: representing objects as vectors, and clustering them, which might be the most basic thing you can do with this sort of data. This requires a distance metric and a clustering algorithm — both of which involve editorial choices! In journalism we can use clusters to find groups of similar documents, analyze how politicians vote together, or automatically detect groups of crimes.

Required

Recommended

Viewed in class

Assignment: you must choose your groups of 2-3 students, and pick a data set to work with for the rest of the course. Due next week.

Week 3: Document topic modelling
The text processing algorithms we will discuss this week are used in just about everything: search engines, document set visualization, figuring out when two different articles are about the same story, finding trending topics. The vector space document model is fundamental to algorithmic handling of news content, and we will need it to understand how just about every filtering and personalization system works.

Required

  • Online Natural Language Processing Course, Stanford University
    • Week 7: Information Retrieval, Term-Document Incidence Matrix
    • Week 7: Ranked Information Retrieval, Introducing Ranked Retrieval
    • Week 7: Ranked Information Retrieval, Term Frequency Weighting
    • Week 7: Ranked Information Retrieval, Inverse Document Frequency Weighting
    • Week 7: Ranked Information Retrieval, TF-IDF weighting
  • Probabilistic Topic Models, David M. Blei

Recommended:

Assignment – due in three weeks
You will perform document clustering with the gensim Python library, and analyze the results.

  1. Choose a document set. You can use the Reuters corpus if you like but you are encouraged to try other sources.
  2. Import the documents and score them in TF-IDF form. Then query the document set by retrieving the top ten closest documents (as ranked by cosine distance) for a variety different queries. Choose three different queries that show interesting strengths and weaknesses of this approach, and write analysis of the results.
  3. Choose a topic modelling method (such as connected components, LSA, or LDA) and cluster your documents. Hand in the extracted topics and comment on the results.
  4. Choose a clustering method (such as k-means) and cluster the documents based on the extracted topics. How do the resulting clusters compare to how a human might categorize the documents

Weeks 4-5: Filtering
Over the next few weeks we will explore various types of collaborative filters: social, algorithmic, hybrid classic correlation-based filtering algorithms (“users who bought X also bought Y”, Netflix Prize) location- and context-based filtering. Our study will include the technical fundamentals of clustering and recommendation algorithms.

Week 4: Information overload and algorithmic filtering
This week we begin our study of filtering with some basic ideas about its role in journalism. Then we shift gears to pure algorithmic approaches to filtering, with a  look at how the Newsblaster system works (similar to Google News.)

Required

Recommended

Week 5: Social software and social filtering
We have now studied purely algorithmic modes of filtering, and this week we will bring in the social. First we’ll look at the entire concept of “social software,” which is a new interdisciplinary field with its own dynamics. We’ll use the metaphor of “architecture,” suggested by Joel Spolsky, to think about how software influences behaviour. Then we’ll study social media and its role in journalism, including its role in information distribution and collection, and emerging techniques to help find sources.

Required

Recommended

Week 6: Hybrid filters, recommendation, and conversation
We have now studied purely algorithmic and mostly social modes of filtering. This week we’re going to study systems that combine software and people. We’ll a look “recommendation” systems and the socially-driven algorithms behind them. Then we’ll turn to online discussions, and hybrid techniques for ensuring a “good conversation” — a social outcome with no single definition. We’ll finish by looking at an example of using human preferences to drive machine learning algorithms: Google Web search.

Required

Recommended

Assignment – due in two weeks:
Design a filtering algorithm for Facebook status updates. The filtering function will be of the form(status update, user data) => boolean. That is, given all previously collected user data and a new status update from a friend, you must decide whether or not to show the new update in the user’s news feed. Turn in a design document with the following items:

  1. List all available information that Facebook has about you. Include a description of how this information is collected or changes over time.
  2. Argue for the factors that you would like to influence the filtering, both in terms of properties that are desirable to the user and properties that are desirable socially. Specify as concretely as possible how each of these (probably conflicting) goals might be implemented in code.
  3. Write psuedo-code for the filter function. It does not need to be executable and may omit details, however it must be specific enough that a competent programmer can turn it into working code in an obvious way.

Weeks 7-9: Knowledge mining

Week 7: Visualization
An introduction into how visualisation helps people interpret  information. The difference between infographics and visualization, and between exploration and presentation. Design principles from user experience considerations, graphic design, and the study of the human visual system. Also, what is specific about visualization in journalism, as opposed to the many other fields that use it?

Required

Recommended

Week 8: Structured journalism and knowledge representation
Is journalism in the text/video/audio business, or is it in the knowledge business? This week we’ll look at this question in detail, which gets us deep into the issue of how knowledge is represented in a computer. The traditional relational database model is often inappropriate for journalistic work, so we’re going to concentrate on so-called “linked data” representations. Such representations are widely used and increasingly popular. For example Google recently released the Knowledge Graph. But generating this kind of data from unstructured text is still very tricky, as we’ll see when we look at th Reverb algorithm.

Required

Recommended

Assignment: Use Reverb to extract propositions from a subset of your data set (if applicable, otherwise the Reuters corpus). Analyze the results. What types of propositions are extracted? What types of propositions are not? Does it depend on the wording of the original text? What mistakes does Reverb make? What is the error rate? Are there different error rates for different types of statements, sources, or other categories?

Week 9: Network analysis
add intelligence examples?
Network analysis (aka social network analysis, link analysis) is a promising and popular technique for uncovering relationships between diverse individuals and organizations. It is widely used in intelligence and law enforcement, but not so much in journalism. We’ll look at basic techniques and algorithms and try to understand the promise — and the many practical problems.

Required

Recommended

Examples of journalistic network analysis

Week 10: Drawing conclusions from data
You’ve loaded up all the data. You’ve run the algorithms. You’ve completed your analysis. But how do you know that you are right? It’s incredibly easy to fool yourself, but fortunately, there is a long history of fields grappling with the problem of determining truth in the face of uncertainty, from statistics to intelligence analysis.

Required

  • basic stats concepts?
  • Correlation and causation, Business Insider
  • The Psychology of Intelligence Analysis, chapters 1,2,3 and 8. Richards J. Heuer

Recommended

Week 11: Security, Surveillance, and Censorship
intro to crypto?
‘On the internet everyone knows you are a dog’. Both in commercial and editorial terms the issues of online privacy, identity and surveillance and important for journalism. Who is watching our online works? How do you protect a source in the 21st Century? Who gets to access to all of this mass intelligence, and what does the ability to survey everything all the time mean both practically and ethically for journalism?

Required

Recommended

Cryptographic security

Anonymity

Assignment: Come up with situation in which a source and a journalist need to collaborate to keep a secret. Describe in detail:

  1. The threat model. What are the risks?
  2. The adversary model. Who must the information be kept secret from? What are their capabilities, interests, and costs?
  3. A plan to keep the information secure, including tools and practices
  4. An evaluation of the costs, possible sources of failure, and remaining risks

Week 12: Tracking flow and impact
How does information flow in the online ecosystem? What happens to a story after it’s published? How do items spread through social networks? We’re just beginning to be able to track ideas as they move through the network, by combining techniques from social network analysis and bioinformatics.

Required

Recommended

Week 13 – Project review
We will spend this week discussing your final projects and figuring out the best approaches to your data and/or topic.

Week 14
Review of course. Invited guest panel of computer scientists working both within journalism and in related fields concerned with public information, discuss their priorities and answer questions about what their priorities.

Comments are closed.