This assignment is designed to help you develop a feel for the way topic modeling works, the connection to the human meanings of documents, and common ways of handling a time dimension. You will analyze the State of the Union speeches corpus, and report on how the subjects have shifted over time in relation to historical events.
1. Download the source data file state-of-the-union.csv. This is a standard CSV file with one speech per row. There are two columns: the year of the speech, and the text of the speech. You will write a Python program that reads this file and turns it into TF-IDF document vectors, then prints out some information. Here is how to read a CSV in Python. You may need to add the line
csv.field_size_limit(1000000000)
to the top of your program to be able to read this large file.
The file is a csv with columns year, text. Note: there are some years where there was more than one speech! Design your data structures accordingly.
2) Feed the data into gensim. Now you need to load the documents into Python and feed them into the gensim package to generate tf-idf weighted document vectors. Check out the gensim example code here. You will need to go through the file twice: once to generate the dictionary (the code snippet starting with “collect statistics about all tokens”) and then again to convert each document to what gensim calls the bag-of-words representation, which is un-normalized term frequency (the code snippet starting with “class MyCorpus(object)”
Note that there is implicitly another step here, which is to tokenize the document text into individual word features — not as straightforward in practice as it seems at first, but the example code just does the simplest, stupidest thing, which is to lowercase the string and split on spaces. You may want to use a better stopword list, such as this one.
Once you have your Corpus object, tell gensim to generate tf-idf scores for you like so.
3) Do LSI topic modeling. You can apply LSI to the tf-idf vectors, like so. You will have to supply the number of dimensions to keep. Figuring out a good number is part of the assignment. Print out the resulting topics, each topic as a lists of word coefficients. Now, sample ten topics randomly from your set for closer analysis. Try to annotate each of these ten topics with a short descriptive name or phrase that captures what it is “about.” You will likely have to refer to the original documents that contain high proportions of that topic, and you will likely find that some topics have no clear concept.
Turn in: your annotated topics plus a comment on how well you feel each “topic” captured a real human concept.
4) Now do LDA topic modeling. Repeat the exercise of step 3 but with LDA instead, again trying to annotate ten randomly sampled topics. What is different?
Turn in: your annotated topics plus a comment on how LDA differed from LSI.
5) Come up with a method to figure out how topics of speeches have changed over time. In the next step you will summarize the changes in the State of the Union speech in each decade of the 20th and 21st century. There are many different ways to use topic modeling to do this. Possibilities include: visualizations, grouping speeches by decade after topic modeling, and grouping speeches by decade before topic modeling. You can base your algorithm on either LSI or LDA, whichever you feel gives the most insight.
Turn in: describe your decade summarization algorithm and explain why you believe it will effectively summarize the speeches across a decade.
6) Analyze how the content of the speeches changed for each decade since 1900. Use your decade summarization algorithm to understand what the content of speeches was in each decade. What patterns do you see? Can you connect the terms to major historical events? (wars, the great depression, assassinations, the civil rights movement, Watergate…)
Turn in: write up what you see in narrative form, no more than 500 words, referring to your algorithmic output.
This assignment is due Friday, October 9 at 2:00 PM. You may email me the results. I am available for questions by email before then, or in person at office hours on Friday afternoons 1-2pm in the Tow Center.